渦流風機和羅茨風機_羅茨風機
渦流風機和羅茨風機:三葉羅茨風機轉子間隙調整方法及降低噪音(圖)
如何調整三葉羅茨風機間隙來降低噪音是有一定科學根據的。因為三葉羅茨風機取決于轉子體積的變化,以將原始想法的機械能轉化為氣體的壓力和動能。與離心式羅茨風機相比,它具有壓頭高、流動阻力小、送風量大等優點,但在使用過程中效率低,噪音高。
由于風機噪聲大,惡化了勞動條件,污染了職業環境,因此在化工廠,特別是中小型化工領域得到了廣泛的應用。因此,人們越來越關注風機的噪聲,探討風機噪聲的產生機理和防治措施。
離心風機和軸流風機在這方面的研究越來越完善。本文分析了羅茨風機氣動噪聲的來源及其機理。在綜合運用各種實例的基礎上,提出了降低噪聲的各種途徑,并探討了降低羅茨風機噪聲的基本途徑。
三葉羅茨風機發生噪聲的機理:
噪聲源
1.羅茨風機
2.羅茨風機包含多種噪聲源。
3.進排氣口氣動噪聲;
4.機械噪聲,如套管、電擊和軸承。
5.振動輻射的固體聲音。
在局部噪聲中,入口和出口的氣動噪聲(空氣動力噪聲)最強,在機械正常運行的條件下,機械噪聲和電磁噪聲等非必要的〔1〕。根據羅茨鼓風機產生的噪聲頻譜分析,其特征是低頻寬帶。風扇的氣動噪聲主要由扭轉噪聲和渦流噪聲兩部分組成。
1、扭轉噪聲
扭轉噪聲是由于在工作輪上的車輪周圍的氣體介質引起的,通過調整間隙,從而導致周圍的氣體壓力波動。當空氣流過葉片時,形成葉片的表層,吸力側的附面層容易加厚,并且有許多渦流。在葉片后緣,壓力邊界的吸力邊界和邊界層構成所謂的尾流區域。在尾流區域中,氣流的壓力和速度遠低于主流氣流區域。
因此,當任務輪反轉彎頭時,葉片出口區域中的氣流非常不均勻。這種不相等的空氣流周期性地影響周圍介質,導致壓力波動形成噪聲。空氣流動越不均勻,噪音就越大。
2、渦流噪聲也稱為渦流噪聲或湍流噪聲。這主要是因為當空氣流過葉片時,湍流邊界層和渦流和旋渦被分離。它會導致葉片上的壓力脈動。其產生的原因有4:一是表面的氣流由紊流邊界層構成,葉片中的壓力脈動在蝸殼表面、蝸殼的內表面和外表面以及一些外觀和噪聲中使用。第二種情況是氣流通過物體,因為渦流將發生在必要的水平。渦流的離開將形成較大的脈動,第三是流動的湍流導致葉片效應的脈動形成噪聲,第四是由兩個渦流構成的噪聲。
三葉羅茨風機產生的渦噪聲的原因遠小于邊界層湍流壓力脈動和兩個渦旋輻射的噪聲功率。此外,由于脈沖角產生的噪聲不太清楚,進入流的湍流強度并不特別??梢哉J為,風扇的渦流噪聲主要是由第二種噪聲引起的,即渦動和渦流離開葉片升力的脈動。
渦流風機和羅茨風機:渦流風機、羅茨風機與離心風機的區別
離心風機也屬于恒壓風機,只是離心風機的風壓本身不大,空氣的壓縮過程往往是經過少許的工作葉輪借助離心力的作用來進行工作的,而羅茨風機在這方面就要遠遠的高于離心風機了,比如說污水的處理或養殖的曝氣,你就需要選擇高壓風機或者羅茨風機了,因為這種環境很明顯需要的壓力較高,壓力低了的話將無法使用,1米水深需要的壓力大約100mbar左右,可按需選擇。
選擇風機,首先確定其流量、壓力、用途等,有了這些,就可以針對這些參數來選購風機了。
北京納西德機電有限公司:
渦流風機和羅茨風機:羅茨風機、渦流風機、離心風機三者間的區別-北京美其樂機電設備
我們說所的渦流風機,也就是漩渦風機、高壓風機的別稱、羅茨風機,渦流風機,離心風機這三種產品分屬于不同的類型,所以就導致它們的類型、使用用途及性能參數都是有差別的。
也可以這樣理解,三者各有各的優勢,各有各有特點,各有各的用途,比如這個工況使用使用羅次風機,而另一個客戶就不適合使用羅次風機了。那么我們如何選擇一款適合自己用的風機呢,又如何區別呢?
一、渦流風機,是利用離心力的運作原理,當風機轉動時,帶到葉輪旋轉,這樣會形成一系列漩渦式的氣體運動,電機配置的是二級電機,每分鐘轉速可達2900轉,經過不斷旋轉,泵體內壓力則會升高,空氣流動加快,直至排出風機。
二、羅茨風機,其實羅茨風機是屬于那種恒流量的風機類型,從其作業的主要參數來看,其實起到關鍵性作用的是風量,而且輸出的壓力和管道的負載是存在正比關系的。
上圖為雙段式渦流風機
實際上羅茨風機是一種容積式的風機,傳送的風量往往由轉數來確定的,主要的目的是把氣體按照一側吸入而傳送到另一側的原理進行工作,其實相對來說,經過測壓的數據顯示壓力是很高的。
不過,要是輸出的風量隨著管道和負載的變化要是需要出現反比關系的話,那就要使用離心風機了,但缺點是機型大,噪音高,不易移動等。
上圖為羅茨風機
三、離心風機也屬于恒壓風機,只是離心風機的風壓本身不大,空氣的壓縮過程往往是經過少許的工作葉輪借助離心力的作用來進行工作的。
而羅茨風機在這方面就要遠遠的高于離心風機了,比如說污水的處理或養殖的曝氣,你就需要選擇高壓風機或者羅茨風機了,因為這種環境很明顯需要的壓力較高,壓力低了的話將無法使用,1米水深需要的壓力大約100mbar左右,可按需選擇。
綜上所述可以理解為,高壓力大流量的可以使羅茨風機,高壓力或中壓力適中流量可以采用渦流風機,低壓力特大流量可以采用離心風機,并且我們的在選型的時候都需要有參數的,如流量、壓力、用途等,有了這些,就可以針對的來選購風機了。
上圖為離心風機
渦流風機和羅茨風機:羅茨風機噪聲源分析
原標題:羅茨風機噪聲源分析
羅茨風機噪聲含有多種“成分”。錦工風機從噪聲產生機理分析,羅茨風機噪聲主要由氣動噪聲、機械噪聲和電磁噪聲等幾部分組成,其中氣體動力性噪聲具有強度高、危害大的特點,是羅茨風機的主要噪聲污染源。從噪聲傳播途徑分析,羅茨風機噪聲由空氣噪聲和結構噪聲兩部分組成,空氣噪聲通過進氣口、排氣口、機殼、管壁等輻射與傳播,結構噪聲通過機殼、管壁與基礎等傳播,結構噪聲容易造成物體振動并激發二次空氣噪聲。羅茨風機噪聲傳播途徑如圖1所示。
1.基礎結構噪聲 2.機殼與管壁噪聲 3.氣流噪聲
圍介質造成了壓力脈動,形成了氣動噪聲。當風機葉輪逐個掃過進氣口與排氣口時,氣體受到周期性擾動,引起壓力脈動,同樣產生了噪聲。由于風機葉輪與機殼之間圍成封閉的基元容積,在基元容積與排氣口連通一瞬間,風機排氣口的高壓氣體向基元容積快速回流,使氣流受到劇烈沖擊與壓縮造成壓力脈動,形成了強烈的氣動噪聲。旋轉噪聲具有確定的基頻,計算式為f1=Z·n/30(Hz),其中Z為葉輪數,n為轉速(r/min)。
渦流噪聲又稱紊流噪聲,是氣體渦流運動產生的一種非穩定流動噪聲。在葉輪及機殼流道表面,尤其在氣流突然減速或速度方向發生突變的部位,氣體附面層發展到一定程度就會發生脫離,形成漩渦。內泄漏氣體的流動方向與主氣流方向相反,也會在泄漏間隙兩端產生漩渦。由于氣體具有粘滯性,氣流漩渦產生后還會在流動過程中進一步分裂,形成一系列更小的渦流。
除了上述旋轉噪聲和渦流噪聲外,氣動噪聲還包括共鳴聲。由于葉輪旋轉和氣流渦流運動等因素的影響,氣體壓力在很寬的頻率范圍內脈動。這種脈動與進(排)氣腔發生聲學上的共振,產生共鳴聲。當共鳴聲通過進、排氣口輻射時,顯著增強氣動噪聲的某些共振頻率成分。
機械噪聲主要來源于機殼的振動,使機殼發生振動的原因主要有兩個:①葉輪的轉動不平衡力,通過傳動構件轉移到機殼上,對機殼產生周期性的激勵;②機殼內的渦流強度所決定的壓力脈動,常與葉片的基頻(即葉片通過頻率)有聯系,也對機殼產生周期性的激勵。風機的風壓越高,這一激勵源越不能忽視。此外,電動機、基礎振動和管路振動也會產生機械噪聲。
幾種典型的羅茨風機噪聲頻譜特性如圖2所示,其特點是中低頻噪聲峰值突出,高頻噪聲成分逐漸減弱。羅茨風機轉速一般為490~3000r/min,旋轉噪聲基頻為49~300Hz,使風機噪聲呈現低頻特征。渦流噪聲以中高頻成分為主,具有寬頻帶特性。共鳴聲對中頻噪聲影響較大。
羅茨風機噪聲與風量、轉速、壓力等參數有關。一般情況下,風機風量、轉速與壓力升高,噪聲增大。實驗證明,當轉速與壓力相同時,風量增大一倍,噪聲增強約6dB(A);壓力每升高一個大氣壓,噪聲增強約3~4dB(A);如果轉速增加一倍,則噪聲增強約6~10dB(A)。
測量羅茨風機噪聲的目的就是為了對被測對象進行噪聲等級的分析、評價或聲源識別,以便采取適當的措施進行噪聲控制。通常羅茨風機的噪聲識別方法有現場測量法、聲功率測量法、表面振動測量法等,其中,現場測量法是工程實際中常用的方法。
現場測量法通過對數據、頻譜的分析確定主要的噪聲輻射源,方法簡便,測量結果能真實反映風機的振動與噪聲水平,但易受環境的影響。聲功率測量法反映噪聲源輻射強度與輻射特性,避免了聲壓級易受測量距離和測量環境影響的缺點。振動測量法是根據羅茨風機的表面振動速度來估計表面輻射聲功率,主要困難在于羅茨風機零部件輻射比的確定,需要測量較多的數據和進行大量的計算。
:
羅茨鼓風機檢修 化工用羅茨鼓風機 羅茨鼓風機生產 ssr羅茨鼓風機
山東錦工有限公司
地址:山東省章丘市經濟開發區
電話:0531-83825699
傳真:0531-83211205
24小時銷售服務電話:15066131928